178th Meeting Acoustical Society of America

2019/12

Mesoscopic wave physics in fish shoals

<u>Benoît TALLON¹</u>, Philippe Roux¹, Guillaume Matte², Jean Guillard³ and Sergey E. Skipetrov⁴

¹ Université Grenoble Alpes, CNRS, ISTerre, Grenoble, France ² iXblue, Sonar division, la Ciotat, France ³ Université Savoie Mont Blanc, INRA, CARRTEL, Thonon-les-Bains, France ⁴ Université Grenoble Alpes, CNRS, LPMMC, Grenoble, France

ahoratoire

Institut des Sciences de la Terre

Ultrasonic fish counting

Ultrasonic fish counting

Mesoscopic physics

Microscopic description (scale $\sim \lambda$):

Macroscopic description (scale $\gg \lambda$):

Mesoscopic physics ($\lambda < \ell_s$):

impact of microscopic interferences of the macroscopic description

Non Rayleigh distribution of ultrasonic speckle (H. Hu *et al.*, *Nat. Phys.* **4**, 2008)

STerre

Coherent backscattering of light on Saturn's rings (JPL, Caltech)

2D Anderson localization of light (M. Segev *et al.*, *Nat. Photon.* **7**, 2013)

Mesoscopic physics for biomass assessment

Cannes Aquaculture (Sébastien Pasta)

Organic certified farm:

- Fish raised under conditions close to their natural environment (selected species, densities, size...).
- Necessity of developing non-invasive monitoring methods.

"Invasive" fish counting method (*Email Gourmand*)

	Ν	W	$\eta ~(\mathrm{kg/m^3})$	<i>V</i> (m ³)
C1 (sea breams, fry)	75,000	10	6	125
C3 (sea breams, adults)	10,080	284	23	125
C4 (sea breams, adults)	6,000	320	15	125
C5 (croakers, adults)	13,900	886	24	512

Mesoscopic physics for biomass assessment

For high fish densities \Rightarrow mesoscopic phenomena

Coherent backscattering effect

 $= 0.2 \text{ m}^2/\text{s}$ 0.2 Angle θ (radians) 10 0 1:0 1:0 $= 0.07 \text{ m}^2/\text{s}$ D -0.2 0.6 0.5 0.9 0.8 0.7 2 3 5 6 7 8 4 Time t (ms) Normalized intensity $I(\theta)/\langle I(0) \rangle$

	$W\left(g ight)$	$\eta (kg/m^3)$
C1	10	6
C3	284	23
C4	320	15
C5	886	24

Measurement of the "fish school diffusivity"

Correlations of the speckle pattern

Non Rayleigh distribution of the speckle pattern

ISTerre

New "mesoscopic tools" for biomass assessment

STerre

Institut des Sciences de la Terre

Mesoshoal

¹ Université Grenoble Alpes, CNRS, ISTerre, Grenoble, France

- ² iXblue, Sonar division, la Ciotat, France
- ³ Université Savoie Mont Blanc, CARRTEL, Thonon-les-Bains, France
- ⁴ Université Grenoble Alpes, CNRS, LPMMC, Grenoble, France

B. Tallon, P. Roux, G. Matte, J. Guillard and S. E. Skipetrov Coherent diffusion of ultrasound in fish shoals Phys. Rev. Lett. (under review)