GdR Complexe Annual Workshop

2020/12

Mesoscopic wave physics in fish shoals

Philippe Roux¹, Benoît Tallon¹, Guillaume Matte², Jean Guillard³, Sergey E. Skipetrov⁴ and John H. Page⁵

¹ University Grenoble Alpes, CNRS, ISTerre, Grenoble, France
 ² iXblue, Sonar division, la Ciotat, France
 ³ University Savoie Mont Blanc, INRA, CARRTEL, Thonon-les-Bains, France
 ⁴ University Grenoble Alpes, CNRS, LPMMC, Grenoble, France
 ⁵ University of Manitoba, Department of Physics & Astronomy, Winnipeg, Canada

Cantra Algin de Recherche aur les Réseaux Trophiques at Ecosystèmes Linnig

Outline

- Shoals biomass estimation
 - Counting methods for low fish densities
 - Multiple scattering issues
 - Open sea cages

Cannes aquafrais

- Mesoscopic wave physics for biomass assessment
 - Spatial correlations and intensity probability density
 - Coherent backscattering (CBS)

Shoal biomass estimation : low density

Well separated targets
 ⇒ Echo-counting

- Diluted shoals
 - \Rightarrow Echo-integration

Fig. 1: (a) 3D acquisition with a multi-beam sounder with juxtaposition of 2D images formed along the plan perpendicular to the vessel route; in red, zone sampled by a vertical sonar. (b) Geometry of the acquisition with 3D sounders (from Simrad Compagny).

K. G. Foote, J. Acoust. Soc. Am. 73, 1932 (1983)

Single scattering approximation

Shoal biomass estimation : high density

High fish density:

- Gregarious species
- Aquaculture

Multiple scattering regime ⇒ Biased biomass estimation

Cannes aquaculture (S. Pasta)

Shoal biomass estimation : impact of multiple scattering

Effects of multiple scattering:

I. Røttingen, FiskDir. Skr. Ser. 16, 301 (1976)

J. De Rosny and P. Roux, J. Acoust. Soc. Am. 109, 2587 (2001)

Solutions :

Manual counting (invasive)

lerre

Counting by doors (local)

Cannes aquafrais

Microscopic description (scale $\sim \lambda$):

Macroscopic description (scale $\gg \lambda$):

Diffusive transport

Macroscopic description (scale $\gg \lambda$):

Diffusive transport

Mesoscopic wave phenomena ($\ell_s \sim \lambda$):

impact of microscopic interferences of the macroscopic description

Non Rayleigh distribution of ultrasonic speckle (H. Hu *et al.*, *Nat. Phys.* **4**, 2008)

Coherent backscattering (A. Aubry *et al.*, *JASA* **121**, 2007)

Multiple scattering in open sea cages

Sea breams cage (Cannes aquafrais)

Organic certified farm:

- Fish raised under conditions close to their natural environment (selected species, densities, size...).
- Necessity of developing non-invasive monitoring methods.

	N	W	$\eta ~(\mathrm{kg/m^3})$	<i>V</i> (m ³)
C1 (sea breams, fry)	75,000	10	6	125
C2 (sea breams, adults)	5,000	500	7	343
C3 (sea breams, adults)	10,080	284	23	125
C4 (sea breams, adults)	6,000	320	15	125
C5 (croakers, adults)	13,900	886	24	512

Multiple scattering in open sea cages

Sea breams cage (Cannes aquafrais)

3 acquisition sequences:

Point source

Emission Reception

SeapiX (iXblue):

- Mills cross shaped antenna
- 64+64 ultrasonic transducers ($\phi = \lambda/2$)
- $f = 150 \text{ kHz} (\lambda = 1 \text{ cm})$
- Acquisition sequence repeated every 30 ms

Plane wave

Scan

Average intensity:

Diffusion theory:

$$\langle I(t)\rangle = \frac{I_0}{2\pi} \int_{-\infty}^{+\infty} \frac{z_0 \mathrm{e}^{-\gamma_0 z'}}{D(1+\gamma_0 z_0)} e^{-\mathrm{i}\Omega t} \mathrm{d}\Omega$$

with:

$$\gamma_0^2(\Omega) = \frac{-\mathrm{i}\Omega}{D} + \frac{1}{D\tau_a}$$

$$z_0 = \frac{2}{3} + \frac{1+R}{1-R} \ell^*$$

D: diffusivity

 τ_a : absorption time

R: reflection coefficient (water/air)

 ℓ^* : transport mean free path

	Ν	W	$\eta ~(\mathrm{kg}/\mathrm{m}^3)$	<i>V</i> (m ³)
C1 (sea breams, fry)	75,000	10	6	125
C2 (sea breams, adults)	5,000	500	7	343
C3 (sea breams, adults)	10,080	284	23	125
C4 (sea breams, adults)	6,000	320	15	125
C5 (croakers, adults)	13,900	886	24	512

Acoustic intensity distribution : the « conductance » g

H. Hu et al., Nat. Phys. 4, 2008

							Weak
						ا د	intensity $P(I) = \exp(-I/\langle I \rangle)/\langle I \rangle$
	N	W	$\eta ~(\mathrm{kg/m^3})$	<i>V</i> (m ³)		≥ 4 10 ⁻²	g = 30
C1 (sea breams, fry)	75,000	10	6	125	g = 30	sity	
C2 (sea breams, adults)	5,000	500	7	343		^m ₁₀ -4	
C3 (sea breams, adults)	10,080	284	23	125		ility	
C4 (sea breams, adults)	6,000	320	15	125		dad 10-6	High
C5 (croakers, adults)	13,900	886	24	512		Prc	
Tallon, P. Roux, G . Matte, J. Guillard,	S. E. Skipetrov	AIP Adv. 10),			(0 10 20 30 Intensity $I/\langle I \rangle$

055208 (2020)

STerre

Spatial correlations

	N	W	η (kg/m ³)	<i>V</i> (m ³)
C1 (sea breams, fry)	75,000	10	6	125
C2 (sea breams, adults)	5,000	500	7	343
C3 (sea breams, adults)	10,080	284	23	125
C4 (sea breams, adults)	6,000	320	15	125
C5 (croakers, adults)	13,900	886	24	512

B. Tallon, P. Roux, G . Matte, J. Guillard, S. E. Skipetrov AIP Adv. 10, 055208 (2020)

STerre

Spatial correlations

	N	W	η (kg/m ³)	<i>V</i> (m ³)
C1 (sea breams, fry)	75,000	10	6	125
C2 (sea breams, adults)	5,000	500	7	343
C3 (sea breams, adults)	10,080	284	23	125
C4 (sea breams, adults)	6,000	320	15	125
C5 (croakers, adults)	13,900	886	24	512

STerre

Spatial correlations and Intensity distribution:

	N	W	$\eta ~(\mathrm{kg}/\mathrm{m}^3)$	<i>V</i> (m ³)
C1 (sea breams, fry)	75,000	10	6	125
C2 (sea breams, adults)	5,000	500	7	343
C3 (sea breams, adults)	10,080	284	23	125
C4 (sea breams, adults)	6,000	320	15	125
C5 (croakers, adults)	13,900	886	24	512

 $C_0 = 0.04, g = 30$

$$C_0 = 0.4, g = 2$$

High fish density

⇒ long range correlation + low conductance

Coherent backscattering (CBS):

P	lane	wave

	N	W	$\eta ~(\mathrm{kg}/\mathrm{m}^3)$	<i>V</i> (m ³)
C1 (sea breams, fry)	75,000	10	6	125
C2 (sea breams, adults)	5,000	500	7	343
C3 (sea breams, adults)	10,080	284	23	125
C4 (sea breams, adults)	6,000	320	15	125
C5 (croakers, adults)	13,900	886	24	512

Coherent backscattering (CBS):

$$\tilde{R}(\theta, \Omega) = \frac{\mathrm{e}^{-\gamma_0 z'}}{1 + \gamma_0 z_0} + \frac{\mathrm{e}^{-\gamma z'}}{1 + \gamma z_0}$$

z': source depth

$$\gamma = \sqrt{\frac{-i\Omega}{D} + k_0^2 \sin^2(\theta) + \frac{3}{\ell^* \ell_a}}$$

 $\gamma_0=\gamma(\theta=0)$

- ℓ_a : absorption length
- ℓ^* : transport mean free path

	N	W	$\eta ~(\mathrm{kg}/\mathrm{m}^3)$	<i>V</i> (m ³)	
C1 (sea breams, fry)	75,000	10	6	125	
C2 (sea breams, adults)	5,000	500	7	343	
C3 (sea breams, adults)	10,080	284	23	125	
C4 (sea breams, adults)	6,000	320	15	125	$\ell^* = 1.7\lambda$
C5 (croakers, adults)	13,900	886	24	512	$\ell^* = 0.7\lambda$

Coherent backscattering (CBS):

Diffusivity D can be estimated from the *dynamic* CBS profile

 $\Delta \theta^{-2} \propto Dt$

 $\ell^* = 1.7\lambda, D = 0.2 \text{ m}^2/\text{s}$ $\ell^* = 0.7\lambda, D = 0.07 \text{ m}^2/\text{s}$

	N	W	$\eta ~(\mathrm{kg}/\mathrm{m}^3)$	<i>V</i> (m ³)
C1 (sea breams, fry)	75,000	10	6	125
C2 (sea breams, adults)	5,000	500	7	343
C3 (sea breams, adults)	10,080	284	23	125
C4 (sea breams, adults)	6,000	320	15	125
C5 (croakers, adults)	13,900	886	24	512

Coherent backscattering (CBS):

Energy velocity of diffusive waves:

$$\ell^* = 1.7\lambda, D = 0.2 \text{ m}^2/\text{s}$$

 $\Rightarrow v_e = \frac{3D}{\ell^*} = 35 \text{ m/s}$

$$\ell^* = 0.7\lambda, D = 0.07 \text{ m}^2/\text{s}$$
$$\Rightarrow \nu_e = \frac{3D}{\ell^*} = 30 \text{ m/s}$$

Ultra-low transport velocity

	N	W	$\eta ~(\mathrm{kg}/\mathrm{m}^3)$	<i>V</i> (m ³)
C1 (sea breams, fry)	75,000	10	6	125
C2 (sea breams, adults)	5,000	500	7	343
C3 (sea breams, adults)	10,080	284	23	125
C4 (sea breams, adults)	6,000	320	15	125
C5 (croakers, adults)	13,900	886	24	512

Coherent backscattering (CBS):

	N	W	η (kg/m ³)	<i>V</i> (m ³)
C1 (sea breams, fry)	75,000	10	6	125
C2 (sea breams, adults)	5,000	500	7	343
C3 (sea breams, adults)	10,080	284	23	125
C4 (sea breams, adults)	6,000	320	15	125
C5 (croakers, adults)	13,900	886	24	512

Fish structure model : elastic medium

(1) Swim bladder: \sim air

(2) fish flesh: $v_{l2} = 1600 \text{ m/s}$ $v_{t2} = 10 \text{ m/s}$

(3) fish bones:
$$v_{l1} = 2340 \text{ m/s}$$

 $v_{t1} = 1040 \text{ m/s}$

Coherent backscattering (CBS):

	N	W	η (kg/m ³)	<i>V</i> (m ³)
C1 (sea breams, fry)	75,000	10	6	125
C2 (sea breams, adults)	5,000	500	7	343
C3 (sea breams, adults)	10,080	284	23	125
C4 (sea breams, adults)	6,000	320	15	125
C5 (croakers, adults)	13,900	886	24	512

Energy velocity of diffusive waves:

→ Assuming energy equipartition $(E_t/E_l=2v_l^3/2v_t^3 \gg 1),$

shear waves dominate in the fish.

 $\Rightarrow v_{fish} \sim v_t = 10 \text{ m/s}$

 $v_{water} \sim v_0 = 1500 \text{ m/s}$

 ϕ fish volume fraction

$$v_e = \frac{1 + (\phi/(1 - \phi))^{1/3}}{1/v_0 + (\phi/(1 - \phi))^{1/3}/v_t}$$

 $v_e \sim 30 \text{ m/s}$

(1) Swim bladder: $v_{l1} = 340 \text{ m/s}$ $\rho_1 = 0.001 \text{ g/cm}^3$ $R_1 = 5 \text{ mm}$

- Conclusions
 - Observation of mesoscopic wave phenomena in fish shoals
 - Potential new tools for biomass assessment
- Perspectives
 - Long time range experiments (fish growth monitoring)

Energy velocity of diffusive waves:

$$k^2 = \frac{\omega}{v_{\rm ph}} + \frac{j}{2\ell_s}$$

$$=k_0^2+4\pi\int_R\eta_R f_R(0)\mathrm{d}a$$

$$v_{\rm gr} = \frac{v_0^2/v_{\rm ph}}{1+\Delta_{\rm gr}}$$

$$\Delta_{\rm gr} = 2\pi \int_R \eta_R \frac{v_0^2}{\omega} \frac{\partial \text{Re} f_R(0)}{\partial \omega} dR$$

$$v_e = \frac{v_0^2/v_{\rm ph}}{1+\Delta_1+\Delta_2}$$

$$\Delta_1 = \frac{v_{\rm ph}}{v_0^2} v_{\rm gr} \, \Delta_{\rm gr}$$

$$\Delta_{2} = 2\pi v_{\rm gr} \int_{R} \int_{\theta} dR d\theta \eta_{\rm R} \sin\theta |f_{R}(\theta)|^{2} \frac{\partial \varphi_{R}(\theta)}{\partial \omega}$$

(0) sea water: $v_{l0} = 1480 \text{ m/s}$ $\rho_0 = 1 \text{ g/cm}^3$

(2) fish flesh: $v_{l2} = 1600 \text{ m/s}$ $v_{t2} = 100 \text{ m/s}$ $\rho_2 = 1.1 \text{g/cm}^3$ $R_1 = 30 \text{ mm}$ (1) fish bones: $v_{l1} = 2340 \text{ m/s}$ $v_{t1} = 1040 \text{ m/s}$ $\rho_1 = 1.4 \text{ g/cm}^3$ $R_1 = 31 \text{ mm}$

(3) Swim bladder: \sim vacuum $R_1 = 5 \text{ mm}$

lerre

STerre

P. Sheng, Introduction to wave scattering, Localization, and Mesoscopic phenomena (2006)

Effet de rétrodiffusion cohérente : vers une estimation directe de la biomasse

Seapix

Avec boucles d'interférence

$$|A + B|^{2} = 2|A|^{2} \{1 + \cos\left[\left(\vec{k_{0}} + \vec{k}\right) \cdot (\vec{r} - \vec{r}')\right] \}$$

Facteur 2 sur l'intensité dans la direction $\vec{k} = -\vec{k_0}$.

Gloires optiques :

Linfo.re

earthsky.org

Effet de rétrodiffusion cohérente : vers une estimation directe de la biomasse

Mesure du cône de rétrodiffusion dans des bancs de saumons :

B. Tallon, P. Roux, G . Matte, J. Guillard, S. E. Skipetrov J. Acoust. Soc. Am. 148, EL234 (2020)

Effet de rétrodiffusion cohérente : vers une estimation directe de la biomasse

Amplitude du cône :

ISTerre

Mesure du cône de rétrodiffusion dans des bancs de saumons :

Effet de rétrodiffusion cohérente : vers une estimation directe de la biomasse

Scan superficiel du banc (diffusion simple):

Distribution de TS:

B. Tallon, P. Roux, G . Matte, J. Guillard, S. E. Skipetrov J. Acoust. Soc. Am. 148, EL234 (2020)

Effet de rétrodiffusion cohérente : vers une estimation directe de la biomasse

B. Tallon, P. Roux, G . Matte, J. Guillard, S. E. Skipetrov J. Acoust. Soc. Am. 148, EL234 (2020)

Suivi de l'activité du banc

Distribution de Vitesses :

Distribution de Rayleigh = pas de corrélations de vitesses

A. Gelblum et al. eLife 9 (2020)

0 5 10 Km

S. Ornes, PNAS 110 (2013)

DWS: Diffusing wave spectroscopy

t (µs)

DWS: Diffusing wave spectroscopy

t (µs)

DWS: Diffusing wave spectroscopy

DWS: Diffusing wave spectroscopy

DWS: Diffusing wave spectroscopy

Lorsque la dynamique est connue :

M. Cowan et al., Phys. Rev. E 65, 066605 (2002)

Shoal biomass estimation : low density

<u>Poissons osseux</u> = forts diffuseurs pour les ultrasons

Pour une faible densité de poissons:

Régime de diffusion simple ⇒ Comptage traditionnel

